第550章(1 / 2)

在南风APP的专业模式中开放多任务处理模式开关。

对于认为多任务处理影响专注的用户可以选择不开启相应的多任务模式。

而对多任务处理有需求的用户可以选择开启相应的多任务模式。

认真听了邱佳纯的诉求。

林灰了解到邱佳纯的诉求基本都是围绕着多任务处理进行阐述的。

实际上在南风APP里引入多任务处理倒是不麻烦。

甚至于林灰可以南风APP变得比邱佳纯设想的还要高效百倍千倍。

但很多时候技术的发展也不能不考虑对社会的影响。

一项技术真的一夜之间突飞猛进会带来很多社会方面的问题。

就比如说像新闻摘要这个软件,如果真的一夕之间效率提高百倍千倍。

那很多像邱佳纯这样的纯粹的文字方面的新闻工作人员很可能直接原地失业。

另外,很多东西林灰如果要搬运出来的话终归还是要考虑搬运的合理性的。

在生成式文本摘要算法的长线发展这方面林灰已经进行了比较长期的规划并且付诸于实际行动。

但这些依然是不够的。

就算一时技术有先进性,但一旦固步自封的话那终将还是会被紧随其后的对手不断赶超。

总之,要居安思危。

依托于林灰自己申报的以及收购来的专利。

林灰目前已经在世界文本摘要这方面是占尽先机。

纵然林灰是占尽先机,也只能比较合理的将生成式文本摘要技术发展(合理搬运)到第五代。

仅仅是第五代生成式文本摘要技术在很多应用场景该技术依然会出现局限性。

就拿新闻/文本摘要多任务处理这方面来说吧。

第五代生成式文本摘要就不能够很好的胜任这方面的应用。

事实上不光是第五代生成式文本摘要算法处理多任务新闻摘要比较麻烦。

再往后的生成式摘要算法处理多任务新闻摘要也不容易。

想要依靠纯粹的生成式文本摘要这方面的算法想实现多任务的新闻处理几乎不可能做到。

即便是技术领域,也很少出现一招鲜吃遍天下的情况。

想要实现对新闻多任务高效处理的话。

或许要等到人工智能成熟之后。

人工智能成熟会带动很多原来遇到瓶颈的领域腾飞。

这其中就包括文本摘要这方面。

当人工智能成熟之后,像文本摘要这样的自然语言处理项目不仅会衍生出新的可能。

而且用户在进行自然语言处理领域所需要的成本也会迅速下跌。

前途是光明的,道路是曲折的。

这一美好前景的实现显然还需要很长时间。

尤其是这个时空很多机器学习这方面的进展并没有前世那个时空进展的迅速。

现在空有机器学习的概念,深度学习却还要差得远。

第245章 专业用户的反馈(续)

第245章专业用户的反馈(续

而没有真正意义上的深度学习,就没有真正意义上的人工智能。

某种程度上来讲,深度学习是机器学习的子集。

想要利用人工智能促进文本摘要方面多任务的进展暂时不现实。

毕竟林灰还需要不短不长的一段时间进行一些深度学习理论方面的基建。

至于说目前的话,如果想要实现多任务文本摘要。

唯一比较可行的方法只能是借助于大数据调教新闻摘要技术。

通过长时间的训练使得生成式摘要算法有搞定新闻的多任务处理。

为什么训练生成式摘要算法这件事情涉及到了大数据呢?

事实上算法不是空中楼阁,一般都需要在生产生活的实践中长期摸索。

一个优秀模型、算法的诞生更是少不