做个简单的理解,就知道霍奇猜想是什么类型问题了。
比如,平面坐标体系中的一条直线,可以用简单的函数做出表达。
一个抛物线图形,自然也能够做表达,是高中物理知识。
圆、椭圆、指数增长曲线等,都可以用特定函数做出表达。
如果放在平面坐标表达的图形中,以上的图形都只是‘有规律的特例’而已。
那么问题来了,“是不是平面坐标能够画出的所有图形,都可以写出所对应的函数或函数组合?”
这个问题的形式,就类似于霍奇猜想,只不过霍奇猜想要复杂的多,它是研究是否可以用代数几何,来表达一类拓扑相关的问题。
正因为如此,霍奇猜想才会被认为是代数几何和拓扑学关联的桥梁。
王浩、林伯涵以及比尔卡尔一起研究的是‘特例的拓扑问题表达’,就像是研究平面坐标中特例的图形。
他们想以此来解决霍奇猜想,根本是不可能的。
如果把问题简化呢?
研究针对的是半拓扑和代数几何,似乎就有可能把一类半拓扑问题研究透彻,一定程度上,就等于是解决了‘弱化霍奇猜想’。
“这个研究对于简化半拓扑微观形态体系非常重要!”
比尔卡尔带着激动说道,“这就是我的工作。”
林伯涵也非常的期待,“如果能完成,肯定也会促进超导理论的发展吧?”